Journal article

Medium Spatial Resolution Satellite Imagery to Estimate Gross Primary Production in an Urban Area

Abd. Rahman As-syakur Takahiro Osawa I WAYAN SANDI ADNYANA

Volume : 2 Nomor : 6 Published : 2010, June

Remote Sensing

Abstrak

Remote sensing data with medium spatial resolution can provide useful information about Gross Primary Production (GPP), especially on the scale of urban areas. Most models of ecosystem carbon exchange that are based on remote sensing use some form of the light use efficiency (LUE) model. The aim of this work is to analyze the distribution of annual GPP in the urban area of Denpasar, Bali. Additional analysis using two types of satellite data (ALOS/AVNIR-2 and Aster) addresses the impact of spatial resolution on the detection of various ecosystem processes in Denpasar. Annual GPP estimated using ALOS/AVNIR-2 varied from 0.13 gC m?2 yr?1 to 2,586.18 gC m?2 yr?1. Meanwhile, the Aster estimate varied from 0.14 gC m?2 yr?1 to 2,595.26 gC m?2 yr?1. GPP as measured by ALOS/AVNIR-2 was lower than that from Aster because ALOS/AVNIR-2 has medium spatial resolution and a smaller spectral range than Aster. Variations in land use may influence the measured value of GPP via differences in vegetation type, distribution, and photosynthetic pathway type. The medium spatial resolution of the remote sensing data is crucial for discriminating different land cover types in heterogeneous urban areas. Given the heterogeneity of land cover over Denpasar, ALOS/AVNIR-2 detects a smaller maximum value of GPP than Aster, but the annual mean GPP from ALOS/AVNIR-2 is higher than that from Aster. Based on comparisons with previous work, we find that ALOS/AVNIR-2 and Aster satellite data provided more accurate estimates of maximum GPP in Denpasar and in the tropical Kalimantan-Indonesia and Amazon forest than estimates derived from the MODIS GPP product (MOD17).